
AUTOMATIC DIFFERENTIATION IN SOLID MECHANICS
INTERPRETATION AND COMPOSITION

Leila Ghaffari, William Moses, Jeremy L Thompson,
Karen Stengel, Rezgar Shakeri, and Jed Brown

Department of Computer Science
University of Colorado Boulder

EnzymeCon
Feb 22, 2023

DIFFERENTIATION IN SOLID MECHANICS
FREE ENERGY FUNCTIONAL AND PDE SOLVERS

ψ (E) =
λ

4
(
J2 − 1− 2 log J

)
− µ (log J + traceE) , J =

√
|I3 + 2E|

1 / 19

DIFFERENTIATION IN SOLID MECHANICS
FREE ENERGY FUNCTIONAL AND PDE SOLVERS

ψ (E) =
λ

4
(
J2 − 1− 2 log J

)
− µ (log J + traceE) , J =

√
|I3 + 2E|

1 / 19

DIFFERENTIATION IN SOLID MECHANICS
FREE ENERGY FUNCTIONAL AND PDE SOLVERS

ψ (E) =
λ

4
(
J2 − 1− 2 log J

)
− µ (log J + traceE) , J =

√
|I3 + 2E|

2 / 19

DIFFERENTIATION IN SOLID MECHANICS
FREE ENERGY FUNCTIONAL AND INVERSE PROBLEMS

ψ (E) =
λ

4
(
J2 − 1− 2 log J

)
− µ (log J + traceE) , J =

√
|I3 + 2E|

3 / 19

DIFFERENTIATION IN SOLID MECHANICS
FREE ENERGY FUNCTIONAL AND INVERSE PROBLEMS

ψ (E) =
λ

4
(
J2 − 1− 2 log J

)
− µ (log J + traceE) , J =

√
|I3 + 2E|

3 / 19

ABAQUS
UHYPER: USER SUBROUTINE

▶ Fully automated
commercial package
(Solid Mechanics, FEM)

▶ Complex interface
(too many inputs)

▶ Unstable for small
deformation due to the
choice of interface design

F = I +∇Xu
▶ Not easy to change the

interface

4 / 19

ABAQUS
UHYPER: USER SUBROUTINE

▶ Fully automated
commercial package
(Solid Mechanics, FEM)

▶ Complex interface
(too many inputs)

▶ Unstable for small
deformation due to the
choice of interface design

F = I +∇Xu
▶ Not easy to change the

interface

4 / 19

ABAQUS
UHYPER: USER SUBROUTINE

▶ Fully automated
commercial package
(Solid Mechanics, FEM)

▶ Complex interface
(too many inputs)

▶ Unstable for small
deformation due to the
choice of interface design

F = I +∇Xu

▶ Not easy to change the
interface

4 / 19

ABAQUS
UHYPER: USER SUBROUTINE

▶ Fully automated
commercial package
(Solid Mechanics, FEM)

▶ Complex interface
(too many inputs)

▶ Unstable for small
deformation due to the
choice of interface design

F = I +∇Xu
▶ Not easy to change the

interface

4 / 19

ABAQUS
UHYPER: USER SUBROUTINE

▶ Fully automated
commercial package
(Solid Mechanics, FEM)

▶ Complex interface
(too many inputs)

▶ Unstable for small
deformation due to the
choice of interface design

F = I +∇Xu
▶ Not easy to change the

interface

AD helps us to create a

more generic interface

(one input function, ψ(E)).

5 / 19

RATEL: EXTENSIBLE, PERFORMANCE-PORTABLE SOLID MECHANICS
HTTPS://GITLAB.COM/MICROMORPH/RATEL

Features:
▶ Linear elasticity
▶ Neo-Hookean and

Mooney-Rivlin
Hyperelasticity

▶ Multi-material
▶ Static, Quasistatic, Dynamic
▶ Initial and Current

configurations

6 / 19

https://gitlab.com/micromorph/ratel

RATEL: EXTENSIBLE, PERFORMANCE-PORTABLE SOLID MECHANICS
COMPOSITION AND ABSTRACTION - LIBCEED: HTTPS://LIBCEED.ORG/EN/LATEST/

▶ Purely algebraic high-order FEM
▶ Single source Vanilla C for physics
▶ Various CPU and GPU backends
▶ Backend plugins with run-time

selection ./bps -ceed /gpu/cuda

▶ Support for Matrix-assembly and
Matrix-free

▶ Operator abstraction
▶ User choice of data storage at

quadrature point
7 / 19

https://libceed.org/en/latest/

RATEL: EXTENSIBLE, PERFORMANCE-PORTABLE SOLID MECHANICS
COMPOSITION AND ABSTRACTION - PETSC AND ENZYME-AD

PETSc:
https://petsc.org/release/

▶ Parallel solution of PDEs
▶ CPUs (MPI)
▶ GPUs
• CUDA
• HIP
• OpenCL

▶ Hybrid MPI-GPU
▶ Optimization (PETSc/Tao)

Enzyme AD:
https://enzyme.mit.edu/

▶ High-Performance Automatic
Differentiation

▶ Work at the LLVM level
▶ Support for variety of languages

(C/C++, Julia, Rust, Fortran, etc)

▶ reverse and forward mode AD

8 / 19

https://petsc.org/release/
https://enzyme.mit.edu/

RATEL: EXTENSIBLE, PERFORMANCE-PORTABLE SOLID MECHANICS
COMPOSITION AND ABSTRACTION - PETSC AND ENZYME-AD

PETSc:
https://petsc.org/release/

▶ Parallel solution of PDEs
▶ CPUs (MPI)
▶ GPUs
• CUDA
• HIP
• OpenCL

▶ Hybrid MPI-GPU
▶ Optimization (PETSc/Tao)

Enzyme AD:
https://enzyme.mit.edu/

▶ High-Performance Automatic
Differentiation

▶ Work at the LLVM level
▶ Support for variety of languages

(C/C++, Julia, Rust, Fortran, etc)

▶ reverse and forward mode AD

8 / 19

https://petsc.org/release/
https://enzyme.mit.edu/

INITIAL VS CURRENT CONFIGURATION

9 / 19

INITIAL VS CURRENT CONFIGURATION

10 / 19

RATEL - ENZYME AD
INITIAL CONFIGURATION - FORWARD SPLIT

// S = d(\psi) / d(E) [Reverse mode]
void SecondPiolaKirchhoffStress_NeoHookean_AD(...) {
__enzyme_autodiff((void *)StrainEnergy, ...);

}

// Call forward S and return tape
__enzyme_augmentfwd(
(void *)SecondPiolaKirchhoffStress_NeoHookean_AD,
enzyme_allocated, tape_bytes, enzyme_tape, tape,
enzyme_nofree, ...);

// Compute dS using the stored tape [Forward-split]
__enzyme_fwdsplit(
(void *)SecondPiolaKirchhoffStress_NeoHookean_AD,
enzyme_allocated, tape_bytes, enzyme_tape, tape, ...);

11 / 19

RATEL - ENZYME AD
CURRENT CONFIGURATION - REVERSE AND FORWARD

// Compute tau = (dPsi / de) * (2 e + I) [Reverse]
void Kirchhofftau_Voigt_NeoHookean_AD(...) {
__enzyme_autodiff((void *)StrainEnergy, ...);
...
for (int j = 0; j < 6; j++)
b_Voigt[j] = 2 * e_Voigt[j] + (j < 3);

...
RatelMatMatMult(1., dPsi, b, tau);

}

// Compute dtau [Forward]
CEED_QFUNCTION_HELPER void dtau_fwd(...) {
__enzyme_fwddiff(
(void *)Kirchhofftau_Voigt_NeoHookean_AD, ...);

}

12 / 19

RATEL - ENZYME AD
PERFORMANCE FOR DIFFERENT JACOBIAN REPRESENTATIONS

Problem Storage Scalars Time (s)

current W;∇xξ, τ , J − 1 17 36.2

initial W,∇Xξ;∇Xu 19 48.4

initial-AD W,∇Xξ;∇Xu,S, tape 31 53.9

current-AD W;∇xξ, e 16 55.8

13 / 19

14 / 19

15 / 19

16 / 19

AD is great but not as smart as

human beings!!!

17 / 19

AD is great but not as smart as

human beings!!!

17 / 19

ENZYME WISHLIST

This material is based upon work supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research under Award Number

DE-SC0016140.

▶ Enzyme-aware clangd

▶ Compile code with -O0

▶ Calling Enzyme in a
debugger

▶ Internal cancellation of
tensor operations

18 / 19

ENZYME WISHLIST

This material is based upon work supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research under Award Number

DE-SC0016140.

▶ Enzyme-aware clangd
▶ Compile code with -O0

▶ Calling Enzyme in a
debugger

▶ Internal cancellation of
tensor operations

18 / 19

ENZYME WISHLIST

This material is based upon work supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research under Award Number

DE-SC0016140.

▶ Enzyme-aware clangd
▶ Compile code with -O0

▶ Calling Enzyme in a
debugger

▶ Internal cancellation of
tensor operations

18 / 19

ENZYME WISHLIST

This material is based upon work supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research under Award Number

DE-SC0016140.

▶ Enzyme-aware clangd
▶ Compile code with -O0

▶ Calling Enzyme in a
debugger

▶ Internal cancellation of
tensor operations

18 / 19

ENZYME WISHLIST

This material is based upon work supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research under Award Number

DE-SC0016140.

▶ Enzyme-aware clangd
▶ Compile code with -O0

▶ Calling Enzyme in a
debugger

▶ Internal cancellation of
tensor operations

18 / 19

OUTLOOK
TOWARDS PLASTICITY

Input Scalar Functions =


ψ(E; I)
ϕ(S; I)
f (S; I)

← free energy
← dissipation potential
← yield surface

19 / 19

