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Molecular dynamics (MD)

● Set up a physical system, define the rules that 
determine the forces and press play.

● Numerical integration of F = ma. Often very 
computationally expensive, there are few shortcuts.

● MD has helped us understand many processes in 
chemistry and biology.

● Ever-improving compute resources, innovative 
machine learning approaches and better protein 
structure prediction mean these methods will 
continue to develop.



Software for molecular simulation

● There are a number of excellent, very mature software 
packages for MD.

● Most packages have one or more fast kernels to run 
simulations (C, C++, CUDA, Fortran), and a layer on 
top to interact with (binaries, Python, config files).

● Most packages are hard to interact with all the way 
down and have a mixed ability to customise.

● No mature MD package has support for differentiable 
simulations.



Foldit1 (PDB ID 6MRR) simulated with 
Molly.jl in the a99SB-ILDN force field with 

explicit solvent (not shown).

Molly.jl

● A pure Julia implementation of MD. One language all the 
way down. Simulation scripts are Julia scripts.

● Closest in design to OpenMM, which has a Python API 
(but multiple kernels under the hood).

● User-defined potentials, simulators etc. are easy to 
define and as fast as built-in features. Everything is 
defined imperatively in Julia.

● Under active development, not stable or fully covered by 
tests yet. Can simulate standard proteins with the 
trajectories matching OpenMM.



Features

● Non-bonded interactions: Lennard-Jones, Coulomb (plus 
reaction field), gravity, soft sphere, Mie

● Bonded interactions: harmonic bonds and angles, 
Morse/FENE bonds, cosine angles, periodic torsion angles

● Read in OpenMM and Gromacs force field files and coordinate 
files using Chemfiles.jl

● Implements AtomsBase.jl interface

● Verlet, velocity Verlet, Störmer-Verlet and flexible Langevin 
integrators

● Steepest descent energy minimisation

● Andersen, Berendsen and rescaling thermostats

● Periodic and infinite boundary conditions in a cubic/triclinic box



Features continued

● Flexible loggers to track arbitrary properties throughout 
simulations

● Cutoff algorithms for non-bonded interactions

● Various neighbour list implementations to speed up 
calculation of non-bonded forces, including use of 
CellListMap.jl

● Implicit solvent GBSA methods

● Unitful.jl compatible

● Some analysis functions, e.g. RDF

● Basic visualisation with GLMakie.jl

● Runs on CPU (threaded) or GPU



Missing features

● Constrained bonds and angles

● Particle mesh Ewald summation

● Pressure coupling and other temperature coupling methods

● System preparation - solvent box, add hydrogens etc.

● Domain decomposition algorithms

● Alchemical free energy calculations

● API stability

● High test coverage

● High performance



Can define components individually



Foldit1 (PDB ID 6MRR) simulated with 
Molly.jl in the a99SB-ILDN force field with 

explicit solvent (not shown).

Can setup like OpenMM, but runs in one language



Learns to stabilise native 
structure

See Greener and Jones, 
PLoS ONE 16(9): 
e0256990 (2021)

Differentiable molecular simulation



The variety of possible loss functions

Radius of gyration
Radial distribution function

Protein-ligand binding

Protein-protein
interaction

Phase change

Flexibility

Fit to experimental data
Supramolecular 

geometry



Software for differentiable simulations

● Some packages do exist for differentiable simulations:

○ Jax MD (in Jax)

○ TorchMD (in PyTorch)

○ Taichi (Python-based)

● These are all promising but are limited in some way by 
scope or performance.

● Molly can do differentiable simulations, including on 
proteins, and is being actively used for research in this 
area.



Automatic differentiation over thousands of steps

Method Description Advantages Disadvantages

Reverse mode Record computation graph, 
compute chain rule 
backwards from final state

Compute time independent of 
parameter number (hence 
most deep learning uses this)

Memory scales linearly with 
model depth, limiting MD 
steps (though can use 
checkpointing)

Forward mode Pass value and gradient 
together, compute chain rule 
forwards from initial state

Memory independent of 
model depth

Compute time scales linearly 
with parameter number, finite 
differencing may be faster

Adjoint sensitivity Solve an augmented ODE of 
the adjoint back in time

Memory independent of 
model depth, fast for 
reversible models (MD can be 
reversible)

Limited implementations, 
limited guidance

More in “Automatic differentiation in machine learning: a survey”, Baydin et al. arXiv 2015
and “Neural Ordinary Differential Equations”, Chen et al. NeurIPS 2018



GPU memory requirements

● During training, the need to store values for 
reverse-mode automatic differentiation means 
that the memory required scales with the number 
of steps.

● This is not a problem when using the learned 
potential for simulations.

● Potential solutions:

○ Forward-mode automatic differentiation.

○ Gradient checkpointing.

○ Invertible simulations.
From https://github.com/cybertronai/gradient-checkpointing

From https://en.wikipedia.org/wiki/Automatic_differentiation

https://github.com/cybertronai/gradient-checkpointing
https://en.wikipedia.org/wiki/Automatic_differentiation


Exploding gradients

● Automatic differentiation gives exact gradients 
but with respect to the numerical integration.

● Some functional forms of force fields, e.g. hard 
sphere interactions, will give exploding 
gradients when used with standard integrators.

● Which integrators are suitable for taking 
gradients through? Is a more conservative time 
step required?

● Fortunately there is lots of prior work on 
stabilising gradients through deep RNNs. From Ingraham 

et al. 2019



Algorithmic challenges

● Long-range electrostatics with particle-mesh 
Ewald: difficult to implement, let alone 
differentiably. Currently using reaction field.

● Bond and angle constraints. A smaller time step 
should be used if not constraining bonds.

● Stochastic simulations, e.g. using certain 
thermostats during training or Langevin dynamics.

● Neighbour lists: not required to be differentiable 
since output is binary.



Foldit1 (PDB ID 6MRR) simulated with 
Molly.jl in the a99SB-ILDN force field with 

explicit solvent (not shown).

Differentiability in Molly.jl

● Up to now, Zygote.jl has been used for AD (with 
ForwardDiff.jl to speed up broadcasting). Gradients match 
finite differencing for reverse and forward mode AD.

● The requirements of Zygote - no mutation or GPU kernels 
- mean broadcasting over the whole neighbour list. This 
leads to poor memory usage and GPU performance.

● Recently the force/energy summation algorithms have 
been re-written to use mutation on CPU and as CUDA.jl 
kernels on GPU.

● AD for these is carried out with Enzyme.jl. Seems to work!

● Performance and memory usage are vastly improved. 
Currently on `kernels` branch.



CUDA kernels

● Current force summation kernel is 
simple: each thread calculates the 
force for one neighbouring pair and 
atomically adds it to the force array.

● Performance is actually okay, ~5x 
slower than the equivalent in OpenMM 
without serious optimisation.

● Enzyme is the only way to differentiate 
through Julia CUDA kernels like this.

● The next challenge: mature MD 
packages use clever neighbour 
ordering and reductions in much more 
complex kernels.



Differentiable simulation in Molly.jl

● Run DMS on small proteins in Molly:

○ Alanine dipeptide in water (2,917 atoms):
~25x ms per step with gradient on GPU,
~14 hours for 1 ns.

○ Trp-cage with GBSA implicit solvent (284 atoms):
~12 ms per step with gradient on GPU,
~17 hours for 5 ns.

● Achievable to improve all-atom implicit solvent force fields 
with this iteration of the software.

● With further optimisation explicit solvent force fields will be 
in reach for improvement.

Sample gradients after 1 ns 
(106 steps), loss is RMSD to 

starting structure

atom_N_σ
0.01064

atom_H_mass         
0.0007533

inter_CO_coulomb_const  
7.475e-7

inter_LJ_weight_14  
0.001836

inter_PT_C/N/CT/C_k_1   
-2.017e-5



Ongoing work - contributions welcome!

● Development currently very active, many features 
added in the last few months.

● High performance, differentiable GPU kernels will 
be a focus for development:

○ Force/energy summation.

○ Particle-mesh Ewald summation.

○ Neighbour lists - doesn’t need to be 
differentiable but does need to be fast.

● Will be advertising for postdocs and PhD students 
towards the end of the year.



Lessons from taking gradients through long simulations

● Controlling temperature is important to prevent gradient 
explosion. Berendsen/rescaling thermostats seem to 
work.

● Stochastic simulators like Langevin dynamics are not to 
be feared; the stochasticity seems to have a regularising 
effect.

● You should be sampling over different starting 
conformations and velocities.

● Gradient norm clipping helps prevents gradient explosion 
like in deep RNNs. Make sure to clip all gradients 
equally!

From Ingraham 
et al. 2019



Lessons from taking gradients through long simulations

● Reverse mode AD with checkpointing and clipping every 
~100 steps seems to work.

● Forward mode AD is generally slower than finite 
differencing with non-differentiable software.

● Float32 and 1 fs time step seems okay for implicit solvent 
molecular systems (no bond constraints).

● Getting accurate gradients is fiddly - only worth it over 
finite differencing for lots of parameters.

● Always test against finite differencing!

From Ingraham 
et al. 2019



Challenges for Enzyme

● Mixed CPU-GPU programming, i.e. allowing generic 
broadcasting of GPU arrays.

● Mature rules system, integrated with ChainRules.jl 
and the existing ecosystem.

● These two things would allow Molly to use Enzyme 
as its main AD, increasing speed and simplicity.

● Easier way to call Enzyme inside rrules, including 
for GPU kernels.

● Continued support for GPU programming, e.g. 
atomics and shared memory.



Peptide (shown with VMD)

Training to reproduce a familiar logo

Diatomic gas Solar system

Making and breaking bonds

Plotting potential energies
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