
Differentiable molecular
simulation with Molly.jl

Joe Greener
MRC Laboratory of Molecular Biology
http://jgreener64.github.io

http://jgreener64.github.io/

Molecular dynamics (MD)

● Set up a physical system, define the rules that
determine the forces and press play.

● Numerical integration of F = ma. Often very
computationally expensive, there are few shortcuts.

● MD has helped us understand many processes in
chemistry and biology.

● Ever-improving compute resources, innovative
machine learning approaches and better protein
structure prediction mean these methods will
continue to develop.

Software for molecular simulation

● There are a number of excellent, very mature software
packages for MD.

● Most packages have one or more fast kernels to run
simulations (C, C++, CUDA, Fortran), and a layer on
top to interact with (binaries, Python, config files).

● Most packages are hard to interact with all the way
down and have a mixed ability to customise.

● No mature MD package has support for differentiable
simulations.

Foldit1 (PDB ID 6MRR) simulated with
Molly.jl in the a99SB-ILDN force field with

explicit solvent (not shown).

Molly.jl

● A pure Julia implementation of MD. One language all the
way down. Simulation scripts are Julia scripts.

● Closest in design to OpenMM, which has a Python API
(but multiple kernels under the hood).

● User-defined potentials, simulators etc. are easy to
define and as fast as built-in features. Everything is
defined imperatively in Julia.

● Under active development, not stable or fully covered by
tests yet. Can simulate standard proteins with the
trajectories matching OpenMM.

Features

● Non-bonded interactions: Lennard-Jones, Coulomb (plus
reaction field), gravity, soft sphere, Mie

● Bonded interactions: harmonic bonds and angles,
Morse/FENE bonds, cosine angles, periodic torsion angles

● Read in OpenMM and Gromacs force field files and coordinate
files using Chemfiles.jl

● Implements AtomsBase.jl interface

● Verlet, velocity Verlet, Störmer-Verlet and flexible Langevin
integrators

● Steepest descent energy minimisation

● Andersen, Berendsen and rescaling thermostats

● Periodic and infinite boundary conditions in a cubic/triclinic box

Features continued

● Flexible loggers to track arbitrary properties throughout
simulations

● Cutoff algorithms for non-bonded interactions

● Various neighbour list implementations to speed up
calculation of non-bonded forces, including use of
CellListMap.jl

● Implicit solvent GBSA methods

● Unitful.jl compatible

● Some analysis functions, e.g. RDF

● Basic visualisation with GLMakie.jl

● Runs on CPU (threaded) or GPU

Missing features

● Constrained bonds and angles

● Particle mesh Ewald summation

● Pressure coupling and other temperature coupling methods

● System preparation - solvent box, add hydrogens etc.

● Domain decomposition algorithms

● Alchemical free energy calculations

● API stability

● High test coverage

● High performance

Can define components individually

Foldit1 (PDB ID 6MRR) simulated with
Molly.jl in the a99SB-ILDN force field with

explicit solvent (not shown).

Can setup like OpenMM, but runs in one language

Learns to stabilise native
structure

See Greener and Jones,
PLoS ONE 16(9):
e0256990 (2021)

Differentiable molecular simulation

The variety of possible loss functions

Radius of gyration
Radial distribution function

Protein-ligand binding

Protein-protein
interaction

Phase change

Flexibility

Fit to experimental data
Supramolecular

geometry

Software for differentiable simulations

● Some packages do exist for differentiable simulations:

○ Jax MD (in Jax)

○ TorchMD (in PyTorch)

○ Taichi (Python-based)

● These are all promising but are limited in some way by
scope or performance.

● Molly can do differentiable simulations, including on
proteins, and is being actively used for research in this
area.

Automatic differentiation over thousands of steps

Method Description Advantages Disadvantages

Reverse mode Record computation graph,
compute chain rule
backwards from final state

Compute time independent of
parameter number (hence
most deep learning uses this)

Memory scales linearly with
model depth, limiting MD
steps (though can use
checkpointing)

Forward mode Pass value and gradient
together, compute chain rule
forwards from initial state

Memory independent of
model depth

Compute time scales linearly
with parameter number, finite
differencing may be faster

Adjoint sensitivity Solve an augmented ODE of
the adjoint back in time

Memory independent of
model depth, fast for
reversible models (MD can be
reversible)

Limited implementations,
limited guidance

More in “Automatic differentiation in machine learning: a survey”, Baydin et al. arXiv 2015
and “Neural Ordinary Differential Equations”, Chen et al. NeurIPS 2018

GPU memory requirements

● During training, the need to store values for
reverse-mode automatic differentiation means
that the memory required scales with the number
of steps.

● This is not a problem when using the learned
potential for simulations.

● Potential solutions:

○ Forward-mode automatic differentiation.

○ Gradient checkpointing.

○ Invertible simulations.
From https://github.com/cybertronai/gradient-checkpointing

From https://en.wikipedia.org/wiki/Automatic_differentiation

https://github.com/cybertronai/gradient-checkpointing
https://en.wikipedia.org/wiki/Automatic_differentiation

Exploding gradients

● Automatic differentiation gives exact gradients
but with respect to the numerical integration.

● Some functional forms of force fields, e.g. hard
sphere interactions, will give exploding
gradients when used with standard integrators.

● Which integrators are suitable for taking
gradients through? Is a more conservative time
step required?

● Fortunately there is lots of prior work on
stabilising gradients through deep RNNs. From Ingraham

et al. 2019

Algorithmic challenges

● Long-range electrostatics with particle-mesh
Ewald: difficult to implement, let alone
differentiably. Currently using reaction field.

● Bond and angle constraints. A smaller time step
should be used if not constraining bonds.

● Stochastic simulations, e.g. using certain
thermostats during training or Langevin dynamics.

● Neighbour lists: not required to be differentiable
since output is binary.

Foldit1 (PDB ID 6MRR) simulated with
Molly.jl in the a99SB-ILDN force field with

explicit solvent (not shown).

Differentiability in Molly.jl

● Up to now, Zygote.jl has been used for AD (with
ForwardDiff.jl to speed up broadcasting). Gradients match
finite differencing for reverse and forward mode AD.

● The requirements of Zygote - no mutation or GPU kernels
- mean broadcasting over the whole neighbour list. This
leads to poor memory usage and GPU performance.

● Recently the force/energy summation algorithms have
been re-written to use mutation on CPU and as CUDA.jl
kernels on GPU.

● AD for these is carried out with Enzyme.jl. Seems to work!

● Performance and memory usage are vastly improved.
Currently on `kernels` branch.

CUDA kernels

● Current force summation kernel is
simple: each thread calculates the
force for one neighbouring pair and
atomically adds it to the force array.

● Performance is actually okay, ~5x
slower than the equivalent in OpenMM
without serious optimisation.

● Enzyme is the only way to differentiate
through Julia CUDA kernels like this.

● The next challenge: mature MD
packages use clever neighbour
ordering and reductions in much more
complex kernels.

Differentiable simulation in Molly.jl

● Run DMS on small proteins in Molly:

○ Alanine dipeptide in water (2,917 atoms):
~25x ms per step with gradient on GPU,
~14 hours for 1 ns.

○ Trp-cage with GBSA implicit solvent (284 atoms):
~12 ms per step with gradient on GPU,
~17 hours for 5 ns.

● Achievable to improve all-atom implicit solvent force fields
with this iteration of the software.

● With further optimisation explicit solvent force fields will be
in reach for improvement.

Sample gradients after 1 ns
(106 steps), loss is RMSD to

starting structure

atom_N_σ
0.01064

atom_H_mass
0.0007533

inter_CO_coulomb_const
7.475e-7

inter_LJ_weight_14
0.001836

inter_PT_C/N/CT/C_k_1
-2.017e-5

Ongoing work - contributions welcome!

● Development currently very active, many features
added in the last few months.

● High performance, differentiable GPU kernels will
be a focus for development:

○ Force/energy summation.

○ Particle-mesh Ewald summation.

○ Neighbour lists - doesn’t need to be
differentiable but does need to be fast.

● Will be advertising for postdocs and PhD students
towards the end of the year.

Lessons from taking gradients through long simulations

● Controlling temperature is important to prevent gradient
explosion. Berendsen/rescaling thermostats seem to
work.

● Stochastic simulators like Langevin dynamics are not to
be feared; the stochasticity seems to have a regularising
effect.

● You should be sampling over different starting
conformations and velocities.

● Gradient norm clipping helps prevents gradient explosion
like in deep RNNs. Make sure to clip all gradients
equally!

From Ingraham
et al. 2019

Lessons from taking gradients through long simulations

● Reverse mode AD with checkpointing and clipping every
~100 steps seems to work.

● Forward mode AD is generally slower than finite
differencing with non-differentiable software.

● Float32 and 1 fs time step seems okay for implicit solvent
molecular systems (no bond constraints).

● Getting accurate gradients is fiddly - only worth it over
finite differencing for lots of parameters.

● Always test against finite differencing!

From Ingraham
et al. 2019

Challenges for Enzyme

● Mixed CPU-GPU programming, i.e. allowing generic
broadcasting of GPU arrays.

● Mature rules system, integrated with ChainRules.jl
and the existing ecosystem.

● These two things would allow Molly to use Enzyme
as its main AD, increasing speed and simplicity.

● Easier way to call Enzyme inside rrules, including
for GPU kernels.

● Continued support for GPU programming, e.g.
atomics and shared memory.

Peptide (shown with VMD)

Training to reproduce a familiar logo

Diatomic gas Solar system

Making and breaking bonds

Plotting potential energies

Acknowledgements

● Molly.jl contributors (incomplete list):

○ Noé Blassel
○ Sebastian Micluța-Câmpeanu
○ Leandro Martínez
○ Jaydev Singh Rao
○ Ethan Meitz
○ Pranay Venkatesh
○ James Schloss
○ Ehsan Irani
○ Andrés Riedemann
○ Maximilian Scheurer

● All Julia contributors and package authors,
particularly Zygote, CUDA, StaticArrays,
Chemfiles, ChainRules, AtomsBase and Unitful

● William Moses, Valentin Churavy and the Enzyme
team for all the bug fixes

● OpenMM and Gromacs

● Sjors Scheres group, MRC-LMB

● David Jones group, UCL

