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Overview

• This is work in progress
• Content from an upcoming review paper on AD pitfalls
• Based on discussions with William Moses, Harshitha Menon, Paul 

Hovland, Bruce Christianson, Laurent Hascoët



How did this start?

• We know: ”AD differentiates programs. Unlike symbolic 
differentiation, it can handle large computations with loops and 
branches. Unlike FD, it is accurate.”
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How did this start?

• We know: ”AD differentiates programs. Unlike symbolic 
differentiation, it can handle large computations with loops and 
branches. Unlike FD, it is accurate.”
• Except if your code has parametric integrals.
• Or linear solvers.
• Or fixed point iterations.
• Or Monte Carlo sampling.



What is going on here?

• Does AD just break randomly for some programs?
• Can we make sense of the failure modes?



Before we talk about pitfalls and AD problems…

Let us talk about what AD is supposed to compute.

“Frequently we have a program that calculates numerical values 
for a function, and we would like to obtain accurate

values for derivatives of the function as well.”[1]

[1] Griewank A, Walther A. Evaluating Derivatives: Principles and Techniques of Algorithmic 
Differentiation. Second ed. Philadelphia, PA, USA: Society for Industrial and Applied 

Mathematics; 2008.
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“Frequently we have a program that calculates numerical values 
for a function, and we would like to obtain accurate

values for derivatives of the function as well.”[1]

[1] Griewank A, Walther A. Evaluating Derivatives: Principles and Techniques of Algorithmic 
Differentiation. Second ed. Philadelphia, PA, USA: Society for Industrial and Applied 

Mathematics; 2008.

Wishful thinking, or state of the art?



Pitfall 1

• We will categorize our problems into “pitfalls”.
• First pitfall:

Do you actually want the derivatives of that function?



Known problem: Chaos
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• Of course chaotic functions 
have crazy derivatives
• But what about their time-

averaged behavior?
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• Are you sure that your PDE 
does not have chaotic effects 
that you are averaging over?
• What happens if you increase 

the resolution?
• What happens if you switch 

from RANS to LES?



Another (less known?) problem: Oscillations

• We don’t need chaos to get bad derivatives. Just oscillations.
• What is the average of a cosine function over time?

• What if we differentiate the time average wrt. frequency?
• We expect convergence to zero!



Another (less known?) problem: Oscillations

• We don’t need chaos to get bad derivatives. Just oscillations.
• What is the average of a cosine function over time?

• We expect convergence to zero!
• But we don’t get convergence.



Why does the derivative not converge?

• The amplitude decreases over 
time
• But the oscillations wrt. 

frequency get faster
• The two effects balance each 

other out, derivatives stay 
constant



Why does the derivative not converge?

• The amplitude decreases over 
time
• But the oscillations wrt. 

frequency get faster
• The two effects balance each 

other out, derivatives stay 
constant
• This example is contrived, but 

what about PDE solvers and 
time-averaged cost functions?



Annoyingly: FD gets it right!

• As the oscillations get faster, they fall below FD resolution eventually.



Pitfall 2

Do you actually want to differentiate at that abstraction level?



Pitfall 2

“AD differentiates what you implement![...] Which occasionally 
differs from what you think you implement!”[2]

[2] Naumann U. The art of differentiating computer programs: an introduction to algorithmic 
differentiation, vol. 24. SIAM;

2012.
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low_poly(x)
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So what does AD compute?

• “AD differentiates what is implemented at the abstraction to 
which you apply AD. Which occasionally differs from what you 
think you implement!”



So what does AD compute?

• “AD differentiates what is implemented at the abstraction to 
which you apply AD. Which occasionally differs from what you 
think you implement!”

Note: abstraction level != language. For example, multiple levels within 
C or within MLIR.



Pitfall 2: Iterative process example

• An old (but effective)  method 
to find sqrt(x)
• We iterate until primal has 

converged to single precision
• What if we differentiate 

through this?

def f(a, x):
return (a/x + x)*0.5

def heron(a, x0, n, tol=1e-6):
x = x0
for i in range(n):
if(abs(x*x-2)<tol):
break

x = f(a, x)
return x



Pitfall 2: Iterative process example



Pitfall 2: More Examples

• Linear solvers
• Integrals with parametric discontinuities
• Iterative fixed point loops
• Discretizations (e.g. discrete vs continuous adjoint)
• Monte Carlo methods

• The ”linear solver fix”, “fixed point loop fix”, etc, are raising the abstraction 
level temporarily.
• They are not really a “fix”: Both answers are “correct”, they just answer 

different questions.



Pitfall 3

Do you actually want to differentiate at that branch?



Branches can have wrong derivatives



What is the problem?

• The presence of branches?
• Discontinuities?
• Non-smoothness?
• If the first derivative is right, how about the rest?



Pitfall 3

• “AD differentiates what is implemented at the abstraction to 
which you apply AD, and in the branch that gets executed.
Which occasionally differs from what you think you implement!”



Pitfall 4

And what about roundoff?



Pitfall 4

And what about roundoff?

And approximate operators?



Pitfall 4 example

x=solve(A,b)

x=A-1b

x=cg(A,b,x0)

AD

xd=solve(A,bd)

xd=A-1bd

xd=cg(A,bd,xd0)

• Does it converge?
• Does it converge well 

in both cases?
• How good is your 

initial guess for xd0?





Pitfall 4

• “AD differentiates what is implemented at the abstraction to 
which you apply AD, in the branch that gets executed, and 
assuming that the operators used at that abstraction level 
are exact. Which occasionally differs from what you think you 
implement!”



Takeaway Messages, Part 1

• Even if
• tools could handle all language features and
• performance was not a problem,

• AD is not a black-box method to “differentiate your program”.
• You need to understand your function, as implemented
• You need to be able to sanity-check your derivatives

“AD is for people who know the derivative of their code already.”



Takeaway Messages, Part 2

Who is responsible for problems?

• Pitfall 1: Weird functions
• Pitfall 2: Weird abstractions
• Pitfall 3: Weird branches
• Pitfall 4: Operator accuracy

Tool? User?



Takeaway Messages, Part 3

• Enzyme is special!
• User API and AD engine are at different abstraction level
• What if the program semantics changed in between? Who is at fault?
• Wait for users to report problems and fix case-by-case?
• Automated checking?
• Derivative-aware frontends?



Questions / Comments?
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