
AD semantics, pitfalls, and the level of abstraction

Jan Hückelheim
jhueckelheim@anl.gov

Overview

• This is work in progress
• Content from an upcoming review paper on AD pitfalls
• Based on discussions with William Moses, Harshitha Menon, Paul

Hovland, Bruce Christianson, Laurent Hascoët

How did this start?

• We know: ”AD differentiates programs. Unlike symbolic
differentiation, it can handle large computations with loops and
branches. Unlike FD, it is accurate.”

How did this start?

• We know: ”AD differentiates programs. Unlike symbolic
differentiation, it can handle large computations with loops and
branches. Unlike FD, it is accurate.”
• Except if your code has parametric integrals.

How did this start?

• We know: ”AD differentiates programs. Unlike symbolic
differentiation, it can handle large computations with loops and
branches. Unlike FD, it is accurate.”
• Except if your code has parametric integrals.
• Or linear solvers.

How did this start?

• We know: ”AD differentiates programs. Unlike symbolic
differentiation, it can handle large computations with loops and
branches. Unlike FD, it is accurate.”
• Except if your code has parametric integrals.
• Or linear solvers.
• Or fixed point iterations.

How did this start?

• We know: ”AD differentiates programs. Unlike symbolic
differentiation, it can handle large computations with loops and
branches. Unlike FD, it is accurate.”
• Except if your code has parametric integrals.
• Or linear solvers.
• Or fixed point iterations.
• Or Monte Carlo sampling.

What is going on here?

• Does AD just break randomly for some programs?
• Can we make sense of the failure modes?

Before we talk about pitfalls and AD problems…

Let us talk about what AD is supposed to compute.

“Frequently we have a program that calculates numerical values
for a function, and we would like to obtain accurate

values for derivatives of the function as well.”[1]

[1] Griewank A, Walther A. Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. Second ed. Philadelphia, PA, USA: Society for Industrial and Applied

Mathematics; 2008.

Before we talk about pitfalls and AD problems…

Let us talk about what AD is supposed to compute.

“Frequently we have a program that calculates numerical values
for a function, and we would like to obtain accurate

values for derivatives of the function as well.”[1]

[1] Griewank A, Walther A. Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. Second ed. Philadelphia, PA, USA: Society for Industrial and Applied

Mathematics; 2008.

Wishful thinking, or state of the art?

Pitfall 1

• We will categorize our problems into “pitfalls”.
• First pitfall:

Do you actually want the derivatives of that function?

Known problem: Chaos

X Axis

°20°15°10°5
0

5
10

15
20

Y
Ax

is

°20

°10

0

10
20

30

Z
A
xi

s

10

20

30

40

50

Lorenz Attractor

r=27.9 r=28.0

°2

0

2

Time-averaged X coordinate: Lx(r, T) =
TR
0

lx(r, t)dt

100

105000

1010000
AutodiÆ of time-average: @

@r (Lx(r, T))

0 200000 400000 600000 800000 1000000
T

°10

0

10
Finite DiÆerences: 1

h (Lx(r + h, T) ° Lx(r, T)) , h = 0.1

• Of course chaotic functions
have crazy derivatives
• But what about their time-

averaged behavior?

Known problem: Chaos

X Axis

°20°15°10°5
0

5
10

15
20

Y
Ax

is

°20

°10

0

10
20

30

Z
A
xi

s

10

20

30

40

50

Lorenz Attractor

r=27.9 r=28.0

°2

0

2

Time-averaged X coordinate: Lx(r, T) =
TR
0

lx(r, t)dt

100

105000

1010000
AutodiÆ of time-average: @

@r (Lx(r, T))

0 200000 400000 600000 800000 1000000
T

°10

0

10
Finite DiÆerences: 1

h (Lx(r + h, T) ° Lx(r, T)) , h = 0.1

Known problem: Chaos

X Axis

°20°15°10°5
0

5
10

15
20

Y
Ax

is

°20

°10

0

10
20

30

Z
A
xi

s

10

20

30

40

50

Lorenz Attractor

r=27.9 r=28.0

°2

0

2

Time-averaged X coordinate: Lx(r, T) =
TR
0

lx(r, t)dt

100

105000

1010000
AutodiÆ of time-average: @

@r (Lx(r, T))

0 200000 400000 600000 800000 1000000
T

°10

0

10
Finite DiÆerences: 1

h (Lx(r + h, T) ° Lx(r, T)) , h = 0.1

• Are you sure that your PDE
does not have chaotic effects
that you are averaging over?
• What happens if you increase

the resolution?
• What happens if you switch

from RANS to LES?

Another (less known?) problem: Oscillations

• We don’t need chaos to get bad derivatives. Just oscillations.
• What is the average of a cosine function over time?

• What if we differentiate the time average wrt. frequency?
• We expect convergence to zero!

Another (less known?) problem: Oscillations

• We don’t need chaos to get bad derivatives. Just oscillations.
• What is the average of a cosine function over time?

• We expect convergence to zero!
• But we don’t get convergence.

Why does the derivative not converge?

• The amplitude decreases over
time
• But the oscillations wrt.

frequency get faster
• The two effects balance each

other out, derivatives stay
constant

Why does the derivative not converge?

• The amplitude decreases over
time
• But the oscillations wrt.

frequency get faster
• The two effects balance each

other out, derivatives stay
constant
• This example is contrived, but

what about PDE solvers and
time-averaged cost functions?

Annoyingly: FD gets it right!

• As the oscillations get faster, they fall below FD resolution eventually.

Pitfall 2

Do you actually want to differentiate at that abstraction level?

Pitfall 2

“AD differentiates what you implement![...] Which occasionally
differs from what you think you implement!”[2]

[2] Naumann U. The art of differentiating computer programs: an introduction to algorithmic
differentiation, vol. 24. SIAM;

2012.

What does AD really differentiate?

sin(x)

poly(x) cordic(x) lut(x)

…bit magic…

What does AD really differentiate?

sin(x)

poly(x) cordic(x) lut(x)

…bit magic…

cos(x)

low_poly(x)

0

AD

So what does AD compute?

• “AD differentiates what is implemented at the abstraction to
which you apply AD. Which occasionally differs from what you
think you implement!”

So what does AD compute?

• “AD differentiates what is implemented at the abstraction to
which you apply AD. Which occasionally differs from what you
think you implement!”

Note: abstraction level != language. For example, multiple levels within
C or within MLIR.

Pitfall 2: Iterative process example

• An old (but effective) method
to find sqrt(x)
• We iterate until primal has

converged to single precision
• What if we differentiate

through this?

def f(a, x):
return (a/x + x)*0.5

def heron(a, x0, n, tol=1e-6):
x = x0
for i in range(n):
if(abs(x*x-2)<tol):
break

x = f(a, x)
return x

Pitfall 2: Iterative process example

Pitfall 2: More Examples

• Linear solvers
• Integrals with parametric discontinuities
• Iterative fixed point loops
• Discretizations (e.g. discrete vs continuous adjoint)
• Monte Carlo methods

• The ”linear solver fix”, “fixed point loop fix”, etc, are raising the abstraction
level temporarily.
• They are not really a “fix”: Both answers are “correct”, they just answer

different questions.

Pitfall 3

Do you actually want to differentiate at that branch?

Branches can have wrong derivatives

What is the problem?

• The presence of branches?
• Discontinuities?
• Non-smoothness?
• If the first derivative is right, how about the rest?

Pitfall 3

• “AD differentiates what is implemented at the abstraction to
which you apply AD, and in the branch that gets executed.
Which occasionally differs from what you think you implement!”

Pitfall 4

And what about roundoff?

Pitfall 4

And what about roundoff?

And approximate operators?

Pitfall 4 example

x=solve(A,b)

x=A-1b

x=cg(A,b,x0)

AD

xd=solve(A,bd)

xd=A-1bd

xd=cg(A,bd,xd0)

• Does it converge?
• Does it converge well

in both cases?
• How good is your

initial guess for xd0?

Pitfall 4

• “AD differentiates what is implemented at the abstraction to
which you apply AD, in the branch that gets executed, and
assuming that the operators used at that abstraction level
are exact. Which occasionally differs from what you think you
implement!”

Takeaway Messages, Part 1

• Even if
• tools could handle all language features and
• performance was not a problem,

• AD is not a black-box method to “differentiate your program”.
• You need to understand your function, as implemented
• You need to be able to sanity-check your derivatives

“AD is for people who know the derivative of their code already.”

Takeaway Messages, Part 2

Who is responsible for problems?

• Pitfall 1: Weird functions
• Pitfall 2: Weird abstractions
• Pitfall 3: Weird branches
• Pitfall 4: Operator accuracy

Tool? User?

Takeaway Messages, Part 3

• Enzyme is special!
• User API and AD engine are at different abstraction level
• What if the program semantics changed in between? Who is at fault?
• Wait for users to report problems and fix case-by-case?
• Automated checking?
• Derivative-aware frontends?

Questions / Comments?

The work is funded in part by support from the U.S. Department of Energy, Office of Science,
under contract DE-AC02-06CH11357. We gratefully acknowledge the computing resources
provided and operated by the Joint Laboratory for System Evaluation (JLSE) at Argonne National
Laboratory.

Acknowledgements

• Jan Hückelheim: jhueckelheim@anl.gov

mailto:jhueckelheim@anl.gov

